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A Calculation Procedure for Designing Ideal
Centrifugal Separation Cascades

L. M. Wang, S. Zeng, D. J. Jiang, and T. M. Song
Department of Engineering Physics, Tsinghua University, Beijing, China

Abstract: A numerical method is presented for determining flow rates in
centrifugal isotope separation cascades that satisfy the required “ideal cascade”
conditions. This method is an iterative method, which in the iteration process uses
the g-iteration method to give the concentration and distributions of components
under a specified hydraulic status for a cascade; and then, based on the concen-
tration distributions, solves the algebraic equations describing the hydraulic sta-
tus of the cascade to improve the specified hydraulic status towards the required
“ideal cascade” conditions. The material losses in the cascade pipes and centri-
fuges are taken into account. Numerical simulations are performed by taking
an MARC cascade with variant stage separation factors as an example. The
results from four cases with and without material losses are compared. The results
demonstrate that the method works very well, and show that when the material
losses are nonexistent or very small, the concentration distributions can exactly
satisfy the “ideal cascade” condition; but when the material losses are large,
the “ideal cascade” condition can not be satisfied, but the method can produce
a solution that allows the condition to be approximately satisfied.

Keywords: Ideal cascade, isotope separation, numerical simulation, separation
cascade

INTRODUCTION

The concept of ideal cascade is very important in isotope separation and
was put forward initially in (1) for the binary separation of uranium
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isotopes. Here an ideal cascade is defined to satisfy two conditions (2):
(a) the enriching separation factor and the stripping separation factor
are equal and are constant at all stages; and (b) the concentrations of
components have no mixing at a confluence point of an up-streaming
and a down-streaming flow. Of all cascades that have the same external
parameters (the feed, the withdrawals, and the component concentrations
in the feed and the withdrawals), the ideal cascade has a total flow rate
that is equal or close to the minimum, and the separative power of the
cascade is the sum of the separative powers of all separation units. This
is to say that to produce the same product, an ideal cascade needs the
minimum separative power, and so, easily understandable, has the high-
est economic efficiency. Because of its importance, the concept of ideal
cascade has been extended to the case of multicomponent isotope
separation, such as the MARC cascade of De La Garza (3) (Matched
Abundance Ratio Cascade), the Q-cascade (4,5) (for small separation
factors), and the “Quasi-ideal Cascade” (for large separation factors)
of Russian researchers (6) (Under certain circumstances, a MARC cas-
cade can be derived from a quasi-ideal cascade (7,8)). These cascades
have their individual ideal conditions; for example, the ideal condition
for an MARC cascade is that at a confluence point in the cascade the
ratio of the abundance of a component with respect to that of another
component in a flow is equal to the ratio in another flow; whereas for
a quasi-ideal cascade, the ideal condition is that the cuts of each compo-
nent flow at all stages are identical, i.e., constant. For ease of reference,
all “ideal” cascades that are different from the traditional ideal cascade in
the sense of separating binary isotopes are all referred to as quasi-ideal
cascades. Regardless of an ideal or a quasi-ideal cascade, they all satisfy
an “‘ideal” state required. Therefore, if possible, it is always desirable to
manage a cascade in reality to be as close to an ideal cascade as possible.
This is an issue of cascade design.

The design of a cascade can be divided into two phases. One is to
determine the concentration distribution of each component in the cas-
cade under a given hydraulic status (i.e., the flow distribution is given,
or in other words, the flows of all stages are known), and is important
in analyzing the separation performance of a known cascade. Another
phase, just on the contrary, is to determine the hydraulic status under
a desired concentration condition, such as the no-mixing condition for
an ideal cascade, or other requirements, such as the constant cuts of
component flows for a quasi-ideal cascade. The latter phase is more
difficult than the former one.

Numerical methods play an important role in designing cascades, as
more practical factors are considered and new separation methods are
explored. Currently all numerical methods (cf. (9,10,11,12)) perform
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the work of determining concentration distributions in a cascade which
requires the hydraulic status of the cascade to be specified, that is, solving
the problems of the first phase. This is due to the fact that the algebraic
equation system describing the concentration distributions is nonlinear
and can only be solved by means of numerical approaches in general.
As for solving problems arising from the second phase of cascade design,
people are used to consider simple cases. In these simple cases, the con-
centration distributions can be given or obtained in advance, such as in
an ideal cascade for binary separation, and thereby the hydraulic status
can then be fairly easily determined and its analytical expressions can
be derived. To deal with increasingly more and more complicated practi-
cal separation cases in multicomponent isotope separation, to just name a
few, inclusion of material losses and impurity productions, consideration
of variant stage separation factors, operation with intermediate feeds and
withdrawals, and use of carrier gas, resorting to numerical approaches
seems to be a good idea. This can be understood by considering material
losses and impurity productions, which are functions of the concentra-
tions distributions and hydraulic status, the concentration distributions
are coupled with the hydraulic status. Therefore, neither the concentra-
tion distributions nor the hydraulic status can be known in advance or
specified. Determining the concentration distributions must be done
together with determining the hydraulic status, which means solving
the problems of both the first phase and the second phase simultaneously
in numerical ways. So the solution of problems of the second phase
includes the solution of problems of the first phase. Here the so-called
“material losses” and “impurity production” mean that corrosion is to
some extent inevitable in gas centrifuges and in cascade pipes because
the multicomponent mixture to be separated (i.e. the process gas) is often
corrosive, which consumes the process gas and meanwhile accompanies
the production of light impurities. An example often seen is that a process
gas is of the fluoride kind and can usually react with the pipes and the
separation units, as well as with the moisture leaking into the cascade,
causing the loss of the process gas and production of the light impurity
HF. We refer to both material losses and light impurity productions as
material losses for simplicity. Without material losses taken into account,
it is very easy to obtain an analytical expression of the flow distribution
in the case of binary separation, but becomes much more difficult in the
case of multicomponent isotope separation (13). With material losses
taken into account, it is no longer an easy job to obtain analytical expres-
sions for the flow distribution (1,8,14,15) even with some simplifications,
such as using the assumption that the losses are proportional to the flow
rates to decouple the concentrations with the hydraulic status. Such an
assumption is invalid when the process gas contains a significant amount
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of nonreactive components, for instance, in consideration of feeding a
carrier gas. So clearly there is a demand for developing a numerical
method to solve the problems of the second phase, without worrying
about the existence of an analytical solution. However, to the authors’
knowledge, apart from the above-mentioned simple cases in which ana-
lytical solutions can be obtained, numerical solution methods are hardly
found in literature to handle the problems of the second phase (16).

The main subject of this paper is to present a numerical method that
is able to determine the hydraulic status of a cascade and the concen-
tration distributions satisfying the specified conditions. In Section 2
and Section 3, the algebraic equations are given describing the concentra-
tions distributions and the hydraulic status. Section 4 briefly explains the
g-iteration method of solving the algebraic equations for the concentra-
tion distributions under a specified hydraulic status, and Section 5
explains the method of determining the hydraulic status with the concen-
tration distributions known. Using two quasi-ideal cascades as examples
(one being an MARC cascade and one a cascade with constant cuts of
component flows), in Section 6 how to obtain the hydraulic status is
discussed that gives the concentration distributions satisfying the require-
ments. Numerical experiments are carried out in Section 7 for an MARC
cascade to justify the numerical method, and the results are presented and
the cases with and without material losses are compared.

THE EQUATION SYSTEM FOR CONCENTRATION
DISTRIBUTIONS

The centrifugal cascade considered here is as shown schematically in
Fig. 1. The length of the cascade, i.e., the number of stages, is N, the feed
F is fed into the cascade at stage Ng, and P, and W are respectively the
product and the waste withdrawals.
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Figure 1. Schematic illustration of a centrifuge cascade.
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Figure 2. The flow and concentration quantities relevant to a stage and the neigh-
boring two stages.

Assume that the process gas consists of N. components, including the
light impurities, which are numbered sequentially, according to their
mole weights from 1 for the lightest component. At each stage, a mass
conservation relation holds (cf. Fig. 2):

LG+ LGl = LG — LGy — miy = 0. (1)
Here, L/, and L are the product flow (head flow) and the waste flow (tail
flow), respectively, of the n-th stage, C;, and C}, are respectively the con-
centrations of the i-th component in the two flows, L/ and L/ are the
two incoming flows at the influent point of the n-th stage, from respect-
ively the product flow of the (n — 1)-th stage and the waste flow of the
(n 4 1)-th stage, Cj4, and C'¢ are the concentrations in the two incoming
flows just before the influent point. G, is the entering flow of the n-th
stage:

LY+ L“+F  n=Nr
Gn_ {L;a_"_LZa n#NF ) (2)

with C;, being the concentration of the i-th component:

in*—n in"—n

(C/a Llu + C{'/uLNu)/Gn n 7& NF .

in=n in=n

c { (ClL+ L + CFF)/G, n= N
in —

For simplicity of expression, all quantities that are not defined or whose
subscripts are out of range should be set to zero, for example for L}*, L.
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Clearly, we have for the cascade in Fig. 1,
L =Ww,Ly=PCl,=Cl",Cy=C/.

m;, is the material loss of the i-th component at the n-th stage

N,
— 4 2: g
Mip = ai.nCi,” G, — aij,naj.ans” Gy

j=1

The material losses (which, explained before, are the joint name of the
corrosive consumptions and impurity productions of materials) are com-
posed of two parts: the first term is the quantity of consumptions, with
al, being the factor of losses for the i-th component; the second term is
the quantity of productions, with a§7,7 being the factor of productions,
counting in the i-th component production from the loss of the j-th
component. To make this clearer, take the separation of SiF, as an
example. Without loss of generality, here the loss results only from the
reaction of SiF,; with the moisture leaking into the cascade to produce
the light impurity HF: SiF4+ H,O =SiOF,+2HF. There are three
components in the natural SiF, (3SiF,, 2°SiF,, *°SiF,), and two compo-
nents in HF ("HF, HF) (Note that HF is considered to have two
components here for the sake of explaining the meaning of the factors
dat, and a;,; in practice it is not necessary to treat "HF and *HF
separately as two components). Therefore, during the separation of
SiF,, the process gas has actually five components. If a loss of 1%
SiF,4 and no loss of HF occur when flowing through the centrifuges of a
stage, then af, = 0(i =1,2), a}, = 0.01(i = 3,4,5). Because a loss of
1 mole of any component in SiF, would produce 2 moles of HF
(whose 99.985% is 'HF and only 0.015% is °HF), df,=
0(@=12,...,5 j=1,2), a‘%)n = 0(i=3,4,5; j=3,4)5), a‘fm =2x
0.99985 (i=1; j=3,4,5), a

ia=2x0.00015 (i =2; j=3,4, 5). Note
that here the quantities of loss and production are measured in terms
of mole.
Having determined C;,, C/,, C;, and C}, the concentration distri-
bution of each component is determined.
For the feed stage (n = Np), Eq. (1) becomes:
F
LUC, + LCl 4 FCE ~ LGy~ Ll =iy =0, ()
with CF being the concentration of the i-th component in the feed. In the
product and waste pipes, according to the mass conservation, we have
L:‘lacl/fi’l :L:1—1Cl{7n—l _mi‘,n—h (n:2a3a"'7N)a

Lecle="r,.C, mi, (n=12,...,N—-1). (4)

n+1~in+l —
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The quantities 7}, and m/, are, respectively, the mass losses at the n-th
stage in the product and waste pipes. Similarly to the mass loss m;, in
the gas centrifuges, the mass losses in the pipes are made up of also
two parts:

iin in=n §njm S jnno

N.
' aﬁfnC{ L — Za'g al ¢ L

Jj=1
(5)

N,
j=1
with the first term being the quantity of losses and the second term the
quantity of productions.
The separation characteristics of a stage are described by the follow-
ing empirical formula:
Cl/n/cl”n M;—M;

C{w /C// :VO.h . (6)
j,n

Jsn

Here 7y, is the so-called overall separation factor of unit mass
difference, which is variant from stage to stage in reality but assumed
to be constant for simplicity in most studies; M; and M; are the molar
weights of the i-th and the j-th components, respectively. Note that
equation (6) holds for small difference between M; and M; (usually
between two isotopic components of the same element). Because later
in the paper the light impurity HF is involved, the mass difference
between HF and another component for isotope separation can be very
large. In this case, there is no evidence that equation (6) still holds, but
experimental observations show that it can be used in numerical simu-
lation as long as the mass difference between the light impurity and other
components is taken to be large enough. However, too large a difference
should not be used to avoid arithmetic problems. Here the difference is
fixed at 20.

When the hydraulic status is known, that is, the hydraulic parameters
(e.g., L, L, L' and L'“) of each stage and the feed are known, from
Equations (1), (3), (4), and (6), plus the restriction condition of the
concentrations:

N. N, N.

Ci,n = Z Cl{ﬁn = Z C,,jn = 17 (7)

i=1 i=1 i=1

the concentration distributions in the cascade can be determined by, say,
using the g-iteration method.
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THE EQUATION SYSTEM DESCRIBING THE
HYDRAULIC STATUS

In the above determining the concentration distributions with the
hydraulic status known is explained. However, when material losses
exist, the hydraulic parameters are coupled with concentrations, which
implies that the hydraulic status cannot be specified in advance. This
can be seen from the following. The four equations in (4) and (5)
lead to

N,
ra __ g/ 2: 2: !
Ln _Lnf l zn 1%~in—1 az]n 1 jn 1 j,nfl) ’

i=1

B ®)
I 1 I
L, =Ly, ll Z( ;/n+1 t”n+1 Z“U - /”n+1 j/',/ﬂ+1) .
i=1
Obviously, the hydraulic quantity L * is correlated to C;,_,, and L, “
to C7, iy i=1,2,...,N.. Even if the hydraulic parameters can be

given prior to the concentration distributions, because of the nonli-
nearity of Eq. (6), the hydraulic parameters change as the iteration
process proceeds for the determination of the concentrations. Using
G,, 0,, L}, and L (n=1,2,...,N) as the unknown hydraulic para-
meters, the conservation relations for these parameters include Eq. (2)
and the following two:

N,
(Gn -3 m> 0,— L, =0, (9)
i=1

N,
(Gn—zm,,n> —L +L'=0, (10)
i=1

where 0, is the cut of the n-th stage, defined as

L,

0" = L —I—L//.

For a cascade of N stages, there are 4N unknowns, the solution of
which needs one more equation, in addition to Egs. (2), (9), and
(10). This missing equation is provided by the condition that makes
the cascade ‘“‘ideal”. In the case of binary separation, this condition
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is just the ideal cascade condition:

1
/
= =1
Ln 1+ R "
1
"o _
=1y Ry "N (1)

11 F _
Cl,ri:Ll C1 n—1= =C; n=Np
Ci”n”H = Ci;‘kl 2<n< Np, Np.<n<N —1,

where
F Nr
m= Gl =G T
2 =1 Pn n=Np+1

and o, and f, are respectively the enriching and stripping factors of
the n-th stage. In the case of multicomponent separation, it is the
quasi-ideal cascade condition. To be specific, for an MARC cascade,
the condition is:

R’/ n=1
/ I
R,n n=N (12)
R,=R, = =R’ n=N
e Yjon—1 jn+1 F
Rf¢”:Rj/',n71_ j,n+1 2§n<NF,NF<n§N—1,

where R;, is the ratio of the concentrations of a chosen pair of com-
ponents, the j-th and the the k-th component, at the confluent point of
the n-th stage: R;, =Cj/Ci5. R}, =Cjt/Cil, and Rf =Cf/Cf.
But for the quasi-ideal cascade requiring constant cuts of component
flows in (6), the condition is:
L, G
I — const (1 <n<N), 13
e ( ) (13)

namely, the cuts of the component flow of the j-th component are
constant at all stages. It is worth pointing out that, when the separ-
ation factor is constant, the above equation implies the cuts of the
component flows of all other components are also constant:

L ¢,
G Clﬁn const (1<n<N), i#].
When material losses take place, the above equation becomes
L Gan

G, Con =¢@;=const, n=1,2,...,N. (14)
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Of course, other types of quasi-ideal cascades can be constructed by
posing other conditions, based on requirements.

SOLUTION OF THE CONCENTRATION DISTRIBUTIONS

With a known hydraulic status, the concentration distributions in a cas-
cade can be readily determined by using the g-iteration (12,17), which is
described briefly as follows. For the i-th component, the four algebraic
equations which its concentration satisfies are (1), (3), (4), and (6), and
can be written as the following algebraic system:

Ax =r. (15)
Here
X ={X1,...,Xp,...,XN}

= {xl,lax2,lax3,17x4,17 <oy X1y X205 X305 Xd s
--~7X1,N7X2A,N,X3,N7X4,N}

_ ! " ! a 1 a ! " !l a Il a

= {Ci,h Ci,17 Ci,l ) Ci,l yooes Cip Ci,n’ Ci,n’ Ci,n )

! " ! a Il a
LR Ci1N7 Ci,N7 Ci.N’ Ci.N}7
r={ry,...,t,..., T}
= {V1,1,V2,17V3‘1,V4,1, e s 20, M3, Fap, - - - ,Vl,N,Vz,N,V3,N,V4,N}7

and A is a block tri-diagonal matrix:

_Bl Ci
A B, G

Ayv.1 By1 Gy
Ay By |

with A,,, B,,, C, are all 4 x 4 block matrices. From Egs. (1), (3), (4) and (6)
the non-zero elements of A,, B,, C, can be obtained. Egs. (1) and (3) are

Bi1yX1 0 + Biogxon + Bi3 X3 + BlapXan =i,
where

Bii,=0L,, Bpn,=1L),

n?

la "a
Bi3n=-L," Bu,=-L,"
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r {FCf—mi,n I’l:NF
1n —

—My n# Ng.
Eq. (6) is
By1 uX10 + BoppX2, = 12,
with
Byin=1, Boy= —qin, 12, =0,
where
!
- Cmn N M, —M;
qin = cr /O,n .
mn

According to (4), we have
A3 p X151 + B33 n X3, = 13,
CarnXopuv1 + BagnXan = Fan,

where

Az =-L By, =L,

» n—1»
/

r3 = 7mi,n—17
" "na
Cppn=—L,, Au,=1L,"
o "
Fap = =M,

Because Eq. (6) is nonlinear, the algebraic system (15) is nonlinear, and
has to be solved by an iterative method. Different from ordinary iterative
methods using the concentration C as the variable of iteration, the
g-iteration method uses the ratio ¢,,, = C,,,/C,, , as the iteration vari-
able, that is, the ratio of the concentrations of a specified component
(here the m-th component) in the product and waste flows. The ratio

of the i-th component, according to (6), is
Gin = Cio/ Cly = quavon ™" (16)

Clearly, under the assumption that ¢,,, (n =1,...,N) are known, one
can see that Eq. (6) is a linear equation with respect to the concentration.
So solving Eq. (15) is easy. Then the concentration distributions of all
components are obtained with assumed values of g, ,. Definitely the
assumed values are unlikely the correct values, so the obtained
C', C", C'% and C"“ do not satisfy Condition (7), and the assumed
values of ¢,,, need to be improved. With the improved values of g,
Eq. (15) is solved again to give improved C’', C”, C'“, and C”“. This
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process is just the g-iteration, which is outlined below, and goes on until
Condition (7) is satisfied.

1. Specify the initial value of q = {qm.1,9m2,---,qmn; - - - gmn}, and set
the number of iterations aje; = 0.
2. Solve equation system (15) for each component to obtain the concen-

tration distributions{ Ci ,l,Cl’f‘, e Gy Gy Gl CRE
;,Nﬂ l/‘,/N7 IN7 / } (izl Ne).
3. Improve q:

N(

>.[0C; + (1 - 0)CY]
1

(1 — (l))q"‘(l)l . )

ZVMW MC//

i=1

where 0, C’ C/ and y, are respectively 0 = {0;,...,0,,...,0y}, C;
{Cls s Gy, Cinds GP={CH, . Gy Cly and Yo =
ot Poms -+ ,yo_’N}, o is the under- relexatlon factor, 0 < w < 1. Set
the number of iterations njwer := njwer + 1. In above formula the addition,
multiplication, division and power are performed element-wise, for
instance,

0C, = {01Cly.. .., 0,Clps .. Oy Cly ).

4. Check whether either one of the following conditions is satisfied:
N, N, N
max(Zc,,,,—1|,|Zc;7n—1|,|ZC;fn—1|> <, (17)
" i1 =1 =1

Hiter < Nitermax . ( 1 8)

Here ¢ is a given small number and is set to 107° in later numerical experi-
ments. Njermax 18 the maximum number of iteration. If one of the above two
conditions is satisfied, the iteration is terminated; if not, go back to (step 2).

SOLUTION OF THE HYDRAULIC EQUATIONS

Before the g-iteration has converged, the concentration distributions
change in every iteration. Without material losses, the hydraulic
parameters involved in the coefficient matrix and the right hand side of
Eq. (15) are not functions of concentrations, in which case the con-
centration distributions can be obtained through enough number of
g-iteration steps, independently of the hydraulic parameters. With
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material losses, however, the hydraulic parameters are functions of
concentrations, in which case the hydraulic status needs to be determined
at every iteration step, that is, it is necessary to solve the hydraulic equa-
tions (2), (9), (10), and (12) as well if we would like to design an MARC
cascade.

Egs.(2), (9) and (10) can be written as

!
(1_§ :all‘l 1%in—-1"" § :E :aun ljn 1 ]n 1>L

111

nl g nl " 19
<1_§ :a1n+l in+l E:E :a11n+1 41 ]n+l) n+1 ( )

i=1 j=
{F n:Np
0 n#NE

(1—Za,,,c,,, (Zainw ),,0,,—le:0, (20)

i=1 j=1

N, N,

N,
(1—243,1@,,1 > df, j”c,n> G,—L,—L'=0. (21)
i=1

i=1 j=1

The fourth equation, namely Eq. (12), cannot be directly used in the solu-
tion, because it is an equation regarding the concentrations rather than
the hydraulic parameters. It is a little tricky to get round of this problem
in a simple way. Here the following equation, which is independent of
(19)—(21), is used to replace Eq. (12)

N,
Ci,n <G’1_Zml~,n> — “in— an 1 C;,;17+1L//+l_0 (22)
=1

The above equation is a relation of mass conservation at the n-th stage
and is the same as

< Zml”> — “in— lL C1n+1LH+1_O (23)
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where
j N,
C1= G/ 3 Con
J
/e
Z 1n+1/ ltj’l+17 (24)
i=1
j
'/
St /3oc

Therefore, when concentrations are known, the solution of Egs. (19)-(21)
and (23) gives the hydraulic parameters. Of course, because Eq. (20) is
nonlinear, iteration is necessary in the solution.

~1
C,=

SATISFACTION OF THE QUASI-IDEAL CONDITION

There is an obvious problem in the solution of the hydraulic equations:
since Eq. (23) and (12) are not equivalent, the hydraulic parameters
obtained from the solution of equations (19)-(23) do not lead Eq. (12)
to be satisfied automatically. Then the question is: how to take Eq. (12)
into account in the solution of (19)—(23).

To allow the concentration distributions in the cascade to satisfy the
required quasi-ideal condition, the key is to make the hydraulic status
meet the corresponding requirement. Clearly, it is impossible to specify
such a status in advance, but fairly easy to acquire this status through
the following procedure. Suppose that a hydraulic status is specified
rather arbitrarily. Because the hydraulic status is known, the concen-
tration distributions can be derived. At this stage of calculation it is
not necessary to obtain accurately the concentration distributions, so
performing one or two steps of the g-iteration is sufficient. Now with
the derived concentration distributions, the corresponding hydraulic
status can be found by solving the hydraulic equations. One can imagine
that if the derived concentration distributions are modified according to
the quasi-ideal condition before being used in the solution of the
hydraulic equations, the hydraulic status obtained would be closer to
the wanted status than that initially specified. Then the specified
hydraulic status can be replaced by the current status and the g-iteration
can be invoked to generate new concentration distributions. This
procedure is repeated until convergence, i.e., Condition (17) holds. We
implement this procedure in the following manner.

In usual separation, it is desired that the components whose molar
weight M; > M™* are enriched at the waste end of the cascade, whereas
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those whose molar weight M; < M* are enriched at the product end. So
here for the MARC cascade considered we take k =j + 1, which gives
M* = (M;+ My)/2. After having obtained the concentration distribu-
tions by using one or two steps of g-iteration, the separation factor of
a stage for the chosen pair of components can be estimated by:

L ChalCG o5
T i/ et

Note that in the calculation the concentrations use the values at the con-
fluent point C,’f; 41 and C,,/Z—l other than C"‘n and Cffn, since the matching
location of the abundance ratio is at the confluent point. The difference
of this separation factor from y; , = yéﬁffo lies in that Eq. (25) reckons
in the influence of the pipes. When material losses are naught,

Cinl Cin

?jk,n = Vikm = T ur
Ckﬁn/ k.n

It is usually required that the separation between the chosen pair of com-
ponents be symmetrical, so we impose at a stage (here the feed stage)

%jen = Piicn = A/ Vikn (M= NF),
and

&jk,n = ﬁjk,n-«—lvﬂjk‘n = ?/‘k,n/a‘jk,ﬂ (1 <n< NF)a

~ R ~ B - (26)
ﬁjk,n = Qjk.n—1, Ojk,n = ij,n/ﬁ/k,n (Nrp <n<N)

because of the matching requirement. Of course, the requirement for

symmetrical separation is not necessary. If needed/ other types of separ-
ation can be requested, for instance, o, = i);kfl and B, = 5)]5,6/ L, at

n = Np. Then the abundance ratios at all confluent points and at the
two cascade ends can be readily calculated
Rj,Np = RJF,
Rin = Rini1/Biner (1 <n<Np); Ry =Ri1/Bys; (27)
Rin=Rin 1By, (Ne <n<N); Ry =Ry 13N

At the moment we know that the rough values of Ci,, C;,, C/,, C4,
and C/¢ from the g-iteration, which are now modified to be used in
the solution of the hydraulic equations. Using the concentrations of
the k-th component at the confluent point we calculate the concentra-

tions of the j-th component, indicated with a hat: 6’1-7,, = Ce uRjk s
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~la ~/la

Cjn iR ns € = C5 Ry Replace Cjy, €5, and Cyin Eq. (24) by
C, namely

j=1 ~
Z Ci,n + Cj,n
= i=1
Cn = ;

Zczn+czn+ Z Czn
i=1 i=j+1

Jj=1 ” ~la
> G TG

i=

J—

la la
ZCIVH- jn+1 + Z Cl)1+1
i=

~lla
I a
Z Cz n—1 Cj,n+1

i=1

N ’
"a I"a Ia
ZC C]11+1+‘Z Cln 1
I=j+

o

Then after the solution of the hydraulic equations, go back to the
g-iteration to find the concentration distributions again. This goes on
until convergence:

1. Specify the initial hydraulic status of the cascade: G, 0,, L], L), and
concentration distributions: C', C”, C", C"4,

Perform one step of g-iteration and update C', C", C"*, C"*¢,

If Condition (17) or (18) is satisfied, terminate the computation; or
continue; ~

Calculate 7y ,,, %ikn, Bjr, from Egs. (25) and (26);

Calculate the ratios R;, at the confluent points from Eq. (12);
Calculate C from (28)

Solve the hydraulic equations (19)-(21) and (23) to obtain
G,,0,, L), L, and return to step 2.

w

Nowk

Table 1. The overall separation factors y,, of unit difference at all stages

n 1 2 3 4 5 6 7 8 9 10 11
Yo 1.359 1.410 1.439 1.447 1.369 1.402 1.390 1.377 1.425 1.359 1.406

n 12 13 14 15 16 17 18 19 20 21
Yo, 1.408 1.431 1.409 1.401 1.438 1.450 1.423 1.447 1.380 1.393
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Table 2. The molar weights M; and the concentrations CI-F in the feed

i 1 2 3 4 5
M; 20 134 135 136 138
cF 0.0 0.1 0.3 0.2 0.4

A little explanation is in place. In the solution of the hydraulic equa-
tions, not all cascades need consideration of how to satisfy the quasi-ideal
condition by modifying the concentrations distributions, depending on
the form of the condition. Before the end of this section, using the
quasi-ideal cascade in (6), we discuss a little how to handle this quasi-
ideal condition. This cascade requires Condition (14) be satisfied, i.c.,

?;CinGn — Cj/gmL:fﬂ =0.
Different from an MARC cascade, not only included are the quantities of
concentrations, but also the hydraulic parameters. For a condition posed
this way, we simply use it to replace Eq. (23) as one of the hydraulic
equation. In this manner there is no need for a tricky treatment of the
condition as for an MARC cascade, and so the solution process is
simpler.

NUMERICAL EXPERIMENTS

Here the numerical experiments are meant for demonstrating the feasi-
bility of the implementation in a numerical method of the above ideas.
Consider a cascade of length N =21, with the feed stage at Ny =17.
The overall separation factors of unit mass difference y,, for the stages
are given in Table 1.

In practice the separation factors are hardly identical for different
stages, so in the table the separation factors are given at random,

! /1 )

Table 3. The material loss factors g;,, a};, @/, and production factors
a,, af,, agf for the four cases considered
a, a, a, S Qi Ay

i(j) 1 2345 1 2,3,4,5 1 2,3,4,5 1(2,3.4,5) other
Casel 0 0 0 0 0 0 0 0
Case2 0 1077 0 LIx1077 0 12x1077 1.0,1.3,0.4,0.7 0
Case3 0 107° 0 1Ix107° 0 12x107° 1.0,1.3,04,0.7 0
Cased 0 1073 0 1Ix1073 0 12x107> 1.0,1.3,04,0.7 0
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simulating the fluctuation in reality. The fluctuation results from small
manufacture discrepancy, differences in flow rates, and cuts at different
stages, etc. Of course the range of fluctuation in the table is exaggerated
somewhat. Without loss of generality, it is assumed that the process gas
consists of five components, with the first component being the impurity,
produced from the corrosive consumption of other components. The
molar weights and the concentrations in the feed of the five components
are given in Table 2.

For MARC cascade, we consider four cases: one without material
losses and three with material losses. In Table 3, the material loss factors
and production factors are given. Note that these factors are meant only
for theoretical research, not aiming at practical situations.

In Tables 4-6, the values of R;, (taking j = 4,k = 5) at the confluent
points are presented for the four cases, as well as the concentrations in the
product and waste withdrawals. Tables are used here instead of more
intuitionistic curve plots because from the latter it is hard to see clearly
the differences of values at the confluent points.

It can be seen from Tables 4-7 that, as the material losses increase,
matching the abundance ratios exactly is no longer possible at the conflu-
ent points. Therefore, for MARC cascades the abundance ratios cannot
always be matched in any case.

CONCLUSIONS

A numerical method is presented for the calculation and design of quasi-
ideal cascades. This method implements a process of solving hydraulic
status in the g-iteration method of determining the concentration distri-
butions with a given hydraulic status. Material losses can be handled in
the method.

If hydraulic parameters are included in the condition that defines
the quasi-ideal cascade, for instance, the condition that requires con-
stant cuts of component flows, then the condition can be used as an
equation in the system of hydraulic equations describing the cascade
hydraulic status. But if the condition is one posed on concentrations,
for instance, the condition in an MARC cascade that requires the
match of abundance ratios, it cannot be directly used as one of the
hydraulic equations, and needs some special treatments: using a relation
of mass conservation instead of the condition as one of the hydraulic
equations, then using the condition to adjust the concentration distri-
butions obtained by the g-iteration, and using the adjusted distributions
in the calculation of the coefficient matrix of the hydraulic equation
system.
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Numerical experiments are carried out to verify the method for an

MARC cascade in four different cases of material losses. The results
show that this method is feasible and effective. It is found that the match
of the abundance ratios is possible when the material losses are naught or
small; the match is impossible when the material losses become large, but
in this case an approximate match is given by the method.
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